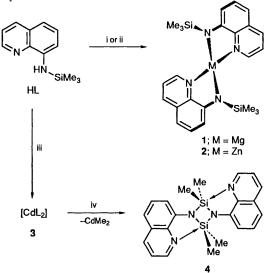
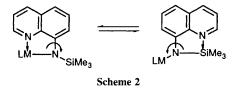
Hypervalent Silicon via Thermolysis of a Cadmium Amide: Thermally Stable Magnesium and Zinc Amides $[ML_2]$, $L = N(8-Quinolyl)(SiMe_3)$

Lutz M. Englehardt,^b Peter C. Junk,^a Wyona C. Patalinghug,^b Rodney E. Sue,^a Colin L. Raston,^{* a} Brian W. Skelton^b and Allan H. White^b


^a Division of Science and Technology, Griffith University, Nathan, Brisbane, 4111, Australia

^b Department of Physical and Inorganic Chemistry, The University of Western Australia, Nedlands, WA, 6009, Australia


Structurally authenticated *N*-functionalized amides [ML₂], $L = N(8-quinolyl)(SiMe_3)$, derived from the reaction of 8-(trimethylsilylamino)quinoline with MgBuⁿBu^s or ZnEt₂ in hexane are sublimable *in vacuo* at 175 °C; the corresponding cadmium analogue, derived from CdCl₂ and LiL, decomposes at *ca.* 240 °C *in vacuo* yielding CdMe₂ and a novel dimeric five coordinate silicon species [Me₂Si(μ -N–C₉H₆N)(μ -N–C₉H₆N)SiMe₂] possessing an Si₂N₂ ring system, Si–N_{bridging} (mean) 1.77 Å, Si–N_{neutral} 2.33(1) Å.

There have been few studies on the structures of magnesium¹⁻³ and zinc^{1,4,5} amides, and the amido chemistry of cadmium is poorly defined.¹ As part of a systematic study of amido chemistry based on the ligand N(8-quinolyl)(SiMe₃), L, which to date has yielded unusual complexes of lithium,⁶ boron and aluminium,⁷ we report the synthesis and structure of bisamides of magnesium and zinc and attempts to prepare the analogous cadmium and mercury complexes. For cadmium

this yielded unexpected results; the formation of dimethylcadmium and a novel hypervalent silicon species, which has implications about the binding of the N-functional group with soft cadmium centres vs. complexation to silicon. Moreover, hypervalent species are of interest in that they are model compounds for nucleophilic substitutions at four coordinate silicon,⁸ and as starting materials and reactive intermediates.⁹ Compounds [MgL₂], 1, and [ZnL₂], 2, were prepared by direct metallation using MgBunBus and ZnEt2, respectively (Scheme 1).[†] Both compounds are deep-red and are thermally stable, subliming without decomposition at ca. 175 °C. The reaction of CdCl₂ and lithiated 8-trimethylsilylaminoquinoline yielded a red solid assumed to be $[CdL_2]$, 3 (IR and ¹H, ¹³C NMR spectroscopy), which proved difficult to separate from a white solid, assumed to be LiCl, and solutions of the products turned dark-grey over several hours. Heating a fresh reaction mixture *in vacuo* (0.1 mmHg) yielded a colourless liquid at $80 \,^{\circ}$ C shown to be [CdMe₂] (NMR and IR spectroscopy)¹⁰ then at 240 °C orange crystals of compound 4. The same compound has also been prepared by treating the five coordinate silicon complex SiMe₂Cl(NH-C₉H₆N), 5,11 derived from 8-aminoquinoline and SiMe₂Cl₂, with LiN-(SiMe₃)₂. The reaction of HgCl₂ with the same lithium reagent under identical conditions resulted in rapid formation of mercury metal.

Scheme 1 Reagents and conditions: i, MgBuⁿBu^s, heptane, 0° C; ii, ZnEt₂, hexane, 0° C; iii, LiBuⁿ, hexane-thf then CdCl₂; iv 80-240°C

[†] Synthesis and characterization of **1–4**: Compound **1**: To 8-(trimethylsilylamino)quinoline⁶ (0.85 g, 3.94 mmol) in 30 ml of hexane at 0 °C was added MgBu^aBu^s in heptane (2.86 ml, 0.7 mol dm⁻³, 2.0 mmol). Solvent was removed *in vacuo* and the orange solid recrystallized from hexane, m.p. 60-62 °C (1.66 g, 93%). ¹H NMR (300 MHz, C₆D₆), δ (rel. SiMe₄) 0.41 (9H, s, SiMe₃) 6.6–7.7 (6H, m, quinolyl); ¹³C NMR (C₆D₆) 1.3 (SiMe₃) 109.6, 115.3, 120.5, 130.6, 139.4, 144.3 (CH) 131.0, 143.0, 156.1.

Compound 2: Details similar to that for 1, using neat ZnEt₂, m.p. 152–154 °C (85%). ¹H NMR (300 MHz, C₆D₆), δ (rel. SiMe₄) 0.42 (9H, s, SiMe₃) 6.5–7.6 (6H, m, quinolyl); ¹³C NMR (C₆D₆) 1.5 (SiMe₃) 109.5, 113.8, 120.9, 130.5, 139.1, 143.8 (CH) 130.8, 141.9, 155.1.

Compounds **3** and **4**: To 8-(trimethylsilylamino)quinoline⁶ (1.0 g, 4.6 mmol) in 100 ml of tetrahydrofuran (thf) at 0 °C was added LiBuⁿ in hexane (3.1 ml, 1.6 mol dm⁻³, 4.8 mmol) then 0.46 g of CdCl₂ (2.5 mmol) yielding a red solution. After 1 h at *ca*. 20 °C the solvent was removed *in vacuo* and the complex extracted into CH₂Cl₂ yielding a red solid when concentrated *in vacuo* [¹H NMR (250 MHz, CD₂Cl₂), δ (rel. SiMe₄) 1.30 (9H, s, SiMe₃) 6.8–7.1 (5H, m, quinolyl) 8.25 (1H, d, *J* 3.5 Hz, quinolyl]. The solid was heated to 80 °C yielding a colourless liquid (CdMe₂), then the product, **4**, was sublimed as orange needles at 240 °C (0.1 mmHg), m.p. 163 °C (0.15 g, 15% yield). ¹H NMR (250 MHz, C₆D₆), δ (rel. SiMe₄ 0.8 (6H, s, SiMe₂) 6.7–7.6, 8.0 (10H, 2H m, quinolyl); mass spectrometry *m*/*z* 400 (36% , M⁺) 385 (100% , M – Me⁺), 200 (61.3% , M_{/2}⁺), 185 (57% , M_{/2} – Me⁺).

Satisfactory elemental analyses were obtained for compounds 1, 2 and 4.

High thermal stability of the zinc compound, but not of the analogous cadmium compound may be a consequence of the softer character of cadmium allowing competitive complexation with silicon for the neutral *N*-donor yielding five coordinate silicon centres, Scheme 2. This would activate the silicon centres towards loss of methyl, either yielding free 'L-Me' which then associates to $(L-Me)_2$, = 4, or 4 directly from the metal coordination sphere of 3. The mass spectrum of 4 shows a strong peak corresponding to $[L-Me]^+$ suggesting that L-Me may be formed in the gas phase.

Results of the X-ray structure determinations‡ are presen-

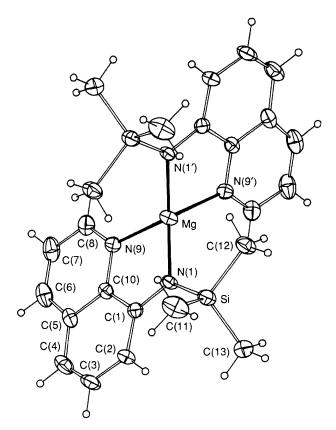
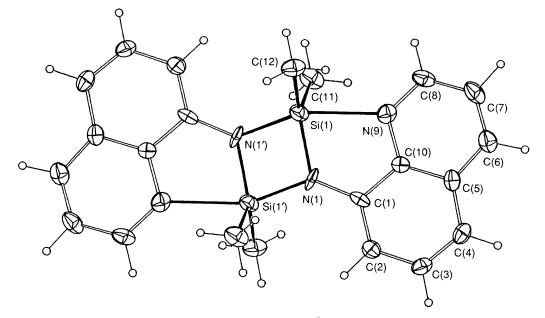



Fig. 1 Projection of one of the two independent molecules for $[MgL_2]$, 1, both possessing crystallographic C_2 symmetry, showing 20% thermal ellipsoids for the non-hydrogen atoms, and arbitrary radii for hydrogen atoms; molecules of $[ZnL_2]$, 2, are similar. Selected bond distances (Å) and angles (°) for molecules 1 and 2 respectively for 1, and 2 in square brackets M–N(1) 1.992(4), 2.004(4) [1.940(4), 1.946(4)]; M–N(9) 2.103(4), 2.096(4) [2.070(4), 2.072(4)]; N(1)–M– N(1') 135.1(2), 138.7(2) [136.3(2), 137.8(2)]; N(9)–M–N(9') 116.8(2), 117.8(2) [115.0(2), 115.4(2)]; N(1)–M–N(9) 83.2(2), 82.1(2) [84.6(2), 84.5(2)]; N(1)–M–N(9') 121.3(1), 120.2(2) [119.7(2), 118.8(2)].

 \ddagger Crystal structure determinations (T = 295 K; Syntex P₂₁ diffraccrystals mounted in capillaries). tometer. Compound 1: $C_{24}H_{30}N_4MgSi_2$, M = 455.0, monoclinic, space group $C^{2/c}$, a =18.643(7), b = 15.213(4), c = 18.463(12) Å, $\beta = 91.41(4)^{\circ}$, U =5235(7) Å³, F(000) = 1936; Z = 8, $D_c = 1.154$ g cm⁻³, μ (Mo-K α) = 1.8 cm^{-1} , specimen $0.2 \times 0.2 \times 0.2 \text{ mm}$, 4306 unique reflections, 1944 with $I > 3\sigma(I)$ used in the refinement, $2\theta_{max} = 50^\circ$; R = 0.055, $R_w = 0.049$. Compound 2: $C_{24}H_{30}N_4ZnSi_2$, M = 496.1, monoclinic, space group $C_{2/c}$, a = 18.579(6), b = 15.262(6), c = 18.448(6) Å, $\beta =$ 91.34(2)°, U = 5230(3) Å³, $F(000) = 2080; Z = 8, D_c = 1.260 \text{ g cm}^{-3}, \mu(\text{Mo-K}\alpha) = 10.7 \text{ cm}^{-1}, \text{ A*} (\text{A*} = \text{transmission coefficient}) 1.10-1.21, specimen 0.34 × 0.10 × 0.44 mm, 4624 unique reflections,$ 2296 with $I > 2\sigma(I)$ used in the refinement, $2\theta_{max} = 50^\circ$; R = 0.058, $R_w = 0.039$. Compound 4: C₂₂H₂₄N₄Si₂, M = 400.6, monoclinic, space group $P2_1/c$, a = 9.748(4), b = 12.465(3), c = 9.593(4) Å, $\beta = 116.49(3)^\circ$, U = 1043.3(6) Å³, F(000) = 424; Z = 2, $D_c = 1.28$ g cm⁻³, μ (Mo-K α) = 1.46 cm⁻¹, specimen 0.2 × 0.2 × 0.2 mm, 964 unique reflections, 596 with $I > 3\sigma(I)$ used in the refinement, $2\theta_{max} = 40^{\circ}$; R = 0.067, $R_w = 0.064$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Fig. 2 Molecular projection of centrosymmetric **4**. Selected bond distances (Å) and angles (°): Si(1)-N(1) 1.770(7); Si(1)-N(1') 1.77(1); $Si(1)-C(11, 12) 1.88(1), 1.85(1); Si(1)-N(9) 2.33(1); Si(1) \cdots Si(1) 2.696(5); Si(1)-N(1)-Si(1') 99.4(4); N(1)-Si(1)-N(1') 80.6(4); N(1)-Si(1)-C(11, 12) 121.6(5), 123.0(4); N(1)-Si(1)-N(9) 77.9(4); N(1')-Si(1)-C(11, 12) 103.5(4), 103.6(5); N(1')-Si(1)-N(9) 158.5(3); N(9)-Si(1)-C(11, 12) 88.8(5), 87.3(4); C(11)-Si(1)-C(12) 112.6(5).$

ted in Figs. 1 and 2. Compounds 1 and 2 are isomorphous with two half molecules in the asymmetric unit, the other halves being generated by C_2 symmetry axes. Overall, the metals have a distorted tetrahedral geometry, the angle at the metal centres subtended by the chelating atoms being 82.7°, 1, 84.6°, 2. Mg-N_{anionic} distances, mean 1.99(8) Å, are similar to non-bridging amides;² other magnesium amides are dimeric with bridging amides associated with three and four coordinate metal centres, the distances being significantly longer, 2.08–2.12 Å,^{2,3} The corresponding distance in 2 is shorter, mean 1.94(3) Å. In general, zinc amides are bridging in the solid with Zn-N distances typically 2.08 Å.4 A noteworthy exception is monomeric $[Zn{N(SiMe_3)_2}_2]$ (gas phase), Zn-N 1.824(14) Å.⁵ The M-N_{neutral} distances, mean 2.10, 1, 2.07(1) Å, 2, are shorter than in the closely related compounds $[M{C(SiMe_3)_2C_5H_4N-2}_2]$, 2.13, 2.30 Å, respectively, ¹² which reflects the chelate ring strain in these compounds relative to that in 1 and 2, and the softer character of zinc.

Molecules of **4** lie on inversion centres with the quinolyl plane and Si_2N_2 ring almost coplanar, interplanar angle 2.4(3)°. Bond distances within this ring, mean 1.77 Å, are longer than in other Si_2N_2 ring systems, mean 1.73 Å in [{N(SiCl_3)SiCl_2}_2]^{13} and [{N(SiMe_3)SiMe_2}_2],^{14} in accordance with an expanded coordination sphere in **4**. As in other five coordinate silicon structures,¹⁵ the *N*-donor is in an axial position of a distorted trigonal bipyramidal stereochemistry, the Si–N_{neutral} distance of 2.33(1) Å being shorter than in systems involving sp³-*N*-donors [>2.44(1) Å],¹⁵ but longer than in those involving sp²-N-donors, 2.028(7)¹⁵ and 2.066(9) Å.¹⁶

We thank the Australian Research Council for support of this work and Delasalle University, Manila, for study leave for W. C. P.

Received, 17th January 1991; Com. 1/00243K

References

1 M. F. Lappert, P. P. Power, A. R. Sanger and R. C. Srivastava, *Metal and Metalloid Amides*, Ellis Horwood, Chichester, 1980.

- 2 A. W. Duff, P. B. Hitchcock, M. F. Lappert, R. G. Taylor and J. A. Segal, *J. Organomet. Chem.*, 1985, **293**, 271; V. R. Magnuson and G. D. Stucky, *Inorg. Chem.*, 1969, **8**, 1427.
- 3 L. M. Engelhardt, B. S. Jolly, P. C. Junk, C. L. Raston, B. W. Skelton and A. H. White, *Aust. J. Chem.*, 1986, **39**, 1337.
- 4 A. L. Spek, J. T. B. H. Jastrzebski and G. van Koten, Acta Crystallogr. Sect. C 1987, 43, 2006; N. A. Bell, H. M. Shearer and C. B. Spencer, Acta Crystallogr. Sect C 1983, 39, 1182.
- 5 A. Haaland, K. Hedberg and P. P. Power, *Inorg. Chem.*, 1984, 23, 1972.
- 6 L. M. Engelhardt, G. E. Jacobsen, P. C. Junk, C. L. Raston, B. W. Skelton and A. H. White, J. Chem. Soc., Dalton Trans., 1988, 1011.
- 7 L. M. Engelhardt, G. E. Jacobsen, P. C. Junk, C. L. Raston and A. H. White, J. Chem. Soc., Chem. Commun., 1990, 89.
- R. J. P. Corriu and C. Guerin, Adv. Organomet. Chem., 1982, 20, 265;
 R. J. P. Corriu, C. Guerin and J. J. E. Moreau, Top. Stereochem., 1984, 15, 43;
 C. Chuit, R. J. P. Corriu and C. Reye, J. Organomet. Chem., 1988, 358, 57;
 R. R. Holmes, Chem. Rev., 1990, 90, 17, and references cited therein;
 C. Breliere, R. J. P. Corriu, G. Royo, W. W. C. W. C. Man and J. Zwecker, Organometallics, 1990, 9, 2633;
 R. J. P. Corriu, A. Kpoton, M. Poiroer, G. Royo, A. de Saxce and J. C. Young, J. Organomet. Chem., 199, 395, 1.
 e.g. G. Cerveau, C. Chuit, R. J. P. Corriu, L. Gerbier and C.
- 9 e.g. G. Cerveau, C. Chuit, R. J. P. Corriu, L. Gerbier and C. Reye, *Phosphorus, Sulfur, and Silicon*, 1989, **42**, 115; P. Arya, J. Boyer, F. Carre, R. Corriu, G. Lanneau, J. Lapasset, M. Perrot and C. Priou, *Angew. Chem., Int. Ed. Engl.*, 1989, **28**, 1016; D. Kummer, S. C. Chaudhry, J. Seifert, B. Deppisch and G. Mattern, *J. Organomet. Chem.*, 1990, **382**, 345.
- 10 I. S. Butler and M. L. Newbury, Spectrochim. Acta Part A, 1977, 33, 669.
- 11 T. R. van den Ancker, R. E. Sue, C. L. Raston, B. W. Skelton and A. H. White, unpublished results.
- 12 M. J. Henderson, R. I. Papasergio, C. L. Raston, A. H. White and M. F. Lappert, J. Chem. Soc., Chem. Commun., 1986, 672.
- 13 U. Wannagat, R. Flindt, D. J. Brauer, H. Burger and F. Dorrenbach, Z. Anorg. Allg. Chem., 1989, **572**, 33.
- 14 P. J. Wheatley, J. Chem. Soc., 1962, 1721.
- 15 G. G. Klebe, J. W. Bats and K. Hensen, J. Chem. Soc., Dalton Trans., 1985, 1; J. Boyer, C. Breliere, F. Carre, R. J. P. Corriu, A. Kpoton, M. Poirier, G. Royo and J. C. Young, J. Chem. Soc., Dalton Trans., 1989, 43, and references cited therein.
- 16 T. R. van den Ancker, B. S. Jolly, M. F. Lappert, C. L. Raston, B. W. Skelton and A. H. White, J. Chem. Soc., Chem. Commun., 1990, 1006.